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Abstract The bulk and surface magnetoplasmon modes of a Cantor-fype superlanice. in which 
the cells consist of two altematingmaterials with their thicknesses following the Cantor sequence, 
are studied in the static approximation. The dispersion relations of the modes are presented 
concisely in terms of the m s f e r  mapix elements. We find that the modes have fractal s m c t m  
due to the special geomeby of the suplattice. AS a result of lowering the symmetry by 
applying an external magnetic field. the propagations of the surface magIetoplasmon become 
non-reciprocal. By plotting the profiles of the scalar potential mplitirudes. we have also 
invesiigated the loCaliration properties of the modes. 

1. Introduction 

The advances in crystal-growth techniques make it possible to tailor intentionally 
semiconductors or other materials to fabricate a new kind of artificial multilayered structure 
called a superlattice. The collective excitations of superlattices have in recent years attracted 
considerable interest. Much attention has been paid to the influence of the geometry of the 
superlattices on the plasmon modes because the modes depend critically upon the structure 
of the superlattices. 

It is known that in superlattices, the surface excitations of individual layers coupled 
by the tails of the evanescent field give rise to the bulk modes propagating along the 
superlattice direction. For a simple periodic system, the bulk plasmon modes characterized 
by Bloch indices, and the surface modes supported by semi-infinite or finite superlattices, 
have been well investigated theoretically [1-5] and experimentally [6-9]. The influences of 
structures with different ratios of thicknesses of the altemating materials or with different 
dielectric constant designs on the plasmon modes were considered by Camley et al [1,3]. 
The results shown that corresponding to different structures of the superlattices, there are 
very different plasmon modes. The interface charged sheets also affect the dispersion 
relations of the modes [4,5]. With the removal of the translational symmetry of the 
superlattices, as in a superlattice with a non-regular layer [IO], or a quasi-periodic region 
[ I  11, some new interface plasmon modes appear. The symmetry can also be lowered by an 
extemal magnetic field [ 12,131, which leads to the non-reciprocal propagation of the surface 
plasmons. Since Merlin et a1 succesfully grew a Fibonacci quasi-periodic superlattice, the 
collective excitations of the quasi-periodic heterostructures have been extensively studied. 
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Hawrylak et a1 [ 151 have demonstrated that the bulk plasmon modes possess Cantor-like 
structure, and studied the scaling behaviours of the frequency spechum. By taking account 
of retardation and spatial dispersion, Feng et a[ [ 161 have investigated the effects of the 
plasma waves on the optical properties of a Fibonacci superlattice. Theoretical wok on the 
magnetoplasmons of the Fibonacci superlattice has been can id  out by Johnson and Camley 
[ 171 and generalized by Albuquerque and Cottam [18]. 

The well known Cantor set is another interesting quasi-periodic system. In the study 
of the optical propelties of Cantor-type superlattices, Wu et a1 [I91 found that the optical 
reflection spectra and electromagnetic modes have well defined self-similar pattems and 
scaling behaviours. In particular, this fractal structure has very recently been used to study 
fractons [20], which have drawn increasing interest in the past few years. By constructing 
an artificial Cantor heterostructure and measuring the frequency spectra and amplitude of 
the vibration modes, Craciun et a1 found the direct evidence of the localized and self-similar 
character of the fractons. 

In this work, we study the plasmon modes of the quasi-periodic Cantor-type superlattices 
in an external magnetic field applied parallel to the interfaces. The transfer matrix method 
has been employed, and the dispersion relations of the bulk and surface magnetoplasmon 
modes are presented implicitly in transfer matrix elements. We plot the profiles of the scalar 
potential amplitudes to investigate the localization of the modes. The numerical results show 
that the dispersion curves of the modes possess fractal structure due to the special geometry 
of the system. As a result of lowering the symmetry by the external magnetic field, the 
propagation of the surface magnetoplasmon has non-reciprocal properties. 

2. General formalism of the dispersion relations 

The system that we consider is a heterostructure consisting of a periodic array of unit cells 
altemating by two materials A and B. We let the thicknesses of the two constituent materials 
in a cell agree with the Cantor sequence (see figure I), and take the z axis as the growth 
direction of the superlattice. The layer thicknesses are so large that the quantization of the 
electronic states by the superlattice potential is negligible, and the properties of the layers 
can be described by macroscopic dielectric functions [13]. We assume that the extemal 
magnetic field is applied parallel to they axis; thus the dielectric tensor for a given layer is 

(1) 

where 

(3) 

(4) 

2 2 
E2p = € c a N o p p ~ c / m ( w ,  - OZ) 

2 
€ 1 ~  % p ( l  - @P,/w2) 
p = A , B  

with O, and mN denoting respectively the cyclotron frequency and the plasma frequency 
of the relevant material, and the subcript M refemng to the background dielectric constant. 
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Figure 1. Three cells for the first., 
second- and third-generation Canror- 
lyp superlattices respectively. 

Figure 2. Dispersion CUNS of the plasmons for the second-generation 
Cantor-rype superlattices: ( U )  bulk modes, and (b)  surface modes. 

Following Johnson et al 1171, we take the static approximation and consider only the 
surface modes propagating along the x-axis direction. After solving Laplace's equation for 
a general layer, we can express the scalar potential as 

Zf -= < z/+1 (5) ,$,,I(~) = [Ate-4(z-zd + Bfeq(z-zd i(rx-or) le 

and the normal component of the electric displacement as 

q(2-s) Kw-W) zf < zf+l, 4r(z) = [qAt (61p  + 6>p)e-q(z-zf) - 9&(6Ip -&e Je 

(6) 

connecting two different positions in the The transfer matrix relationship of q$ and 
layer can then be established, that is 

where 

The continuity of ,$, and 0, across the interfaces enables us to connect any two positions 
in the superlattice by a product of matrices. Obviously, the relationship of 4 and LIZ across 
a cell is 
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where d and N are the thickness and the total number of the layers in a cell respectively, 
and 

is the product of matrices mapping the Cantor sequence. On the other hand, the Bloch 
theorem leads to 

The combination of equation (9) with ( I  1) results in the dispersion relation of the bulk 
modes as 

cos(pd) = q q $TrxN (12) 

and the allowed modes are determined by the condition of 1q1 < 1. 
In order to find the dispersion relation of the surface modes, we consider a semi-infinite 

superlanice occupying the half-space of z > q = 0. The Bloch index in equation (11) 
should now be replaced by a complex number 

p = PI + ipz (13) 

stands for the bulk modes propagating along the z-axis direction, and where the real part 
the imaginary part p~ for the surface modes, and satisfies 

p2 = d-l In(Iq1 + (qz - I)’”) lql =- I .  (14) 

In the region of z < 0, the convergent solution of the scalar potential must be chosen. After 
matching the boundary conditions at the surface, we obtain the dispersion relation of the 
surface modes 

where xij are the elements of the matrix X N ,  and y* = &e-PZdd; here the sign is the same 
as that of q. 

3. Numerical results and conclusions 

In this section we present some numerical examples of the dispersion relations developed 
in the previous section. The model system is a GaAs superlattice with only B layers doped: 
thus the plasma frequency of A layers, o p ~  = 0. The background dielectric constants are 
taken as E - A  = E ~ B  = 13.13, and the half-space of z < 0 is assumed to be a vacuum. 

Let us first examine the case without an extemal magnetic field. The bulk and surface 
modes for the generation number n = 2 are shown in figure 2. From the figure we see 
that there are two kinds of mode around the surface plasma frequency of the bulk material 
W S B  op~/fi: the high-frequency modes, which are higher than ose, and the low- 
frequency modes, which are lower. The surface modes. as we have seen, are very close to 
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Figure 3. Amplitude of rhe scalar potenlial as 
a function of depth into the superlattice. fio 
unit cells for the generation number n = 2 
?.re shown. The surface modes correspond U) 
qd = 5; (a) for (II = 0.98b~, and ( b )  for 
w = 0.588ops. 

Figure 4. Dispersion curves of the square of the frequency 
versus the h-plane wavevector. (a)  n = 2. (b) n = 3. 

the bulk modes except for the uppennost one, and in the small-wavevector region, some 
surface modes embed into the bulk plasmon continuum. In figure 3, we have plotted the 
amplitude profiles: (a) qd = 5 with w = 0 . 9 8 3 ~ ~ .  and (b) w = 0 . 5 8 8 ~ ~ .  It is found 
that only the surface mode that is far from the bulk continuum is strongly localized at the 
surface (see figure 3(a)), while the surface mode that closes to the bulk continuum has very 
large penetrating depth (see figure 3(b)), it is very similar to the bulk modes near it (see 
figure 9(h)). 

The total number of the bands of either high- or low-frequency bulk modes is identical 
to the number of gap layers in a cell (we refer to the undoped layer as a gap layer), that is 

where n is the generation number. If we change the scale of the frequency axis to the square 
of frequency, as shown in figure 4, in which we have plotted the dispersion curves of the 
square of the frequency versus the in-plane wavevector for generation numbers n = 2 
and n = 3, we find that the bulk modes have well defined reflection symmehy about 
0.50:~ = wgB. With increasing generation number, the modes shift toward higher and 
lower frequencies. It can be seen that bulk modes consist of two groups for n = 2, and 
three groups for n = 3 in both high- and low-frequency regions, since there are two and 
three different gap layers' thicknesses in the cells for n = 2 and n = 3 ,  respectively. The 
number of bands in each group is exactly equal to the number of relevant layers with the 
same thickness. For example, the three groups of bulk modes for n = 3 have respectively 
1, 2 and 4 bands corresponding to three different gap thicknesses d / 3 ,  d/32 and d/33.  In 
figure 5, we have plotted the dispelsion relations of w versus Bloch index p for qd = 5 
to identify the bands that are too close to be resolved in the scale of figure 4. From the 
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figure, seven bands of low-frequency modes can clearly be seen. We believe that this kind 
of fractal structure of the modes is characteristic of the special geomehy of the Cantor-type 
superlattice. 
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Figure 5. Dispersion c w e s  ofthe frequency versus 
lhe Bloch index for n = 2 and qd = 5. 

Figure 6. Dbpersion awes of lhe bulk magnetoplasmon 
modes for n = 2 with lhe cyclotron frequcncy 0, = 
0.5wpa: (0)  lhe frequency versus the in-plane WaveveCloK 
(b) the square of frequency versus the in.plane waveveclor. 

Figure 7. The non-reciprocal dispersion curves of 
the surface magnetoplasmon modes: the relevant 
parameters arc Ihe same as in figure 6. 

Figure 8. Amplitude profiles of WO surface magnetc- 
plasmon modes, (a)  qd = 5 and w = l.O2uw3. (6) 
qd = -5 and w = 1.04wpa. The other relevant 
parameters are lhe same as in figure 6. 
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Now we turn to the investigation of the effects of the static extemal magnetic field on 
the plasmon modes. We assume that the magnetic field is applied so that the cyclotron 
frequency W, = 0 . 5 ~ ~ .  The bulk magnetoplasmon modes for n = 2 are shown in figure 
6; note that the scale of the frequency axis in panel (b) is the square of the frequency. 
We have seen that the modes shift toward the higher- and lower-frequency regions, and the 
widths of the bands are narrowed by the applied magnetic field. The reflection symmetry 
in the scale of the square of the frequency still exists, but the symmetrical centre moves to 
the position 0 . 6 2 5 ~ : ~  from that of 0.50;~ the case without external magnetic field. 

As indicated in 1121 and [ 171, the applied extemal magnetic field can lower the symmetry 
of the system and lead to non-reciprocal propagations of the surface magnetoplasmons, and 
it is therefore important for device application. In figure 7, we show the non-reciprocal 
dispersion relations of the surface modes. From the figure, we find that two branches of 
surface modes located in the frequency gap between the high- and the low-frequency bulk 
modes appear in the negative-wavevector region. The different localization characters of 
the non-reciprocal surface modes are shown in figure 8, in which two amplitude profiles 
correspond to ( a )  qd = 5 with U = 1.02opg and (b) qd = -5 with o = 1.w~. We see 
from the figure that the mode depicted in panel (a) is mostly localized at the surface, but 
the mode in ( b )  is localized at the fourth interface. 

Finally, we consider the influence of thickness or wavevector and the extemal magnetic 
field on the localization propelties of the bulk modes. Four typical amplitude profiles of the 
bulk modes are shown in figure 9. The panels (a) and (b) are related to the modes at the 
edges of the uppermost band in the low-frequency region for n = 2 with qd = 5 and without 
the extemal magnetic field; a symmetry and an anti-symmetry mode can be seen in (a) and 
( b )  respectively. When we increase the value of q d ,  which means increasinge the thickness 
d or wavevector q. the modes are more localized at the interface, as shown in (c), in which 
the mode corresponds to the symmetry state but qd = 10. The effect of applied magnetic 
field on the localization of the modes is shown in (d) ,  in which the mode corresponds to 
the anti-symmetry state but with the cyclotron frequency o, = 0 . 5 ~ ~ ;  we observe that 
differing from (b). the mode is mostly localized at the second and fourth interfaces in the 
cells, which means that the magnetic field makes the modes further localized. 

In conclusion, we have presented the dispersion relations of the bulk and surface plasmon 
modes of Cantor-type superlattices including the effects of the applied extemal magnetic 
field. As a result of the special geometry of the system, the fractal structure of the modes 
is found. By plotting the amplitude of the scalar potentials, we have investigated the 
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localization of the modes. We find that the modes are more localized in the extemal 
magnetic field. The non-reciprocal propagation caused by the external magnetic field is 
examined. As pointed out in [17], the non-reciprocal behavious of the modes could be 
impomt  for device applications. The bulk and surface plasmon, as we know, can be 
observed experimentally by, for example, inelastic light scattering [HI, or far-infrared 
attenuated total reflection spectroscopy [9], or electron-energy-loss spectroscopy [21]. We 
hope that our theoretical results stimulate the interest of experimentalists. 

Acknowledgments 

We gratefully acknowledge useful conversations with Professors Yu-mei Znang and Hong 
Chen. Part of this work was supported by the Chinese National Advanced Technology 
Foundation through grant 040-144-5-085. 

References 

111 Camley R E and Mills D L 1984 Pkys. Rev. E 29 1695 
[2] Giuliani G F and QUiM J J 1983 Phys. Rev. Lea.51 919 
131 Johnson B L, Weiler J T and Camley R E 1985 Phys. R w .  B 32 6544 
[41 Constantinou N C and CoUam M G 1986 J .  Phys. C: Solid Slate Phys. 19 739 
151 Farias G A. Auto M M and Albuquerque E L 1988 Phys. Rev. B 38 12540 
161 Olego D, Pinczuk A. Gossard A C and Wiegmann W 1982 Phys. Rev. B 25 7867 
[71 Pinczuk A, La” M G and Gossard A C 1986 Phys. Rev. Len. 56 2092 
I81 Fasol C, Mesm N. Hughes H P. Fischer A and Plmg K 1986 Phys. Rev. Lerr. 56 2517 
191 Dumelow T. Parker T J. Tilley D R, Beall R B and Harris J J 1991 SoiidSlare Corn" 77 253 

[ I O ]  Bloss W L 1991 J ,  Appl. Phys. 69 3068; 1991 Phys. Rev. B 44 1105 
[I I 1  Liu N. Feng W G and Wu X 1992 J .  Phys.:Condens. Mailer 4 9823 
I121 Johnson B Land Camley R E 1988 Phys. Rev, B 38 3311 
1131 Albuquerque E 1, Fulw P, Farias G A, Auto M M and lilley D R 1991 Phys. Rev. E 43 2032 
1141 Merlin R. Bajema K. Clarke R, Juang F Y and B h a m c h q a  P K 1985 Phys. ROO. k t i .  55 1768 

Todd J,  Merlin R. Clarke R. Mohanty K M and Axe J D 1986 Phys. Rev, Leff .  57 1157 
[I51 Hawrylak P and Quinn J J 1986 Phys. Rev. Left, 57 380 

Hawrylak P. Eliasson G and @inn J J 1987 Phys. Rev. B 36 6501 
1161 Feng W G, Liu N and Wu X 1991 Phys. Rev. B 43 6893 
[I71 Johnson B Land Camley R E 1991 Phys. Rev. B 44 1273 
1181 Albuquerque E L and Cottam 1992 Solid Stale Con“.  81 383 
1191 Wu X. Yao H S and Feng W G 1991 SPIE vol 1519, (Bellingham W A  SPE) p 625 

Feng W 0. Liu N and Wu X SPIE vol 1928, to be published 
1201 Craciun F. BetNcci A. Molinari E Pevl A and Alippi A 1992 Phys. Rev. k i t .  68 1555 
(211 Rocca M ,  Lazzarino M and Valbusa U 1992 Phys. Rev. Len. 69 2122 


